Calcium Signaling in Oomycetes: An Evolutionary Perspective

نویسندگان

  • Limian Zheng
  • John J. Mackrill
چکیده

Oomycetes are a family of eukaryotic microbes that superficially resemble fungi, but which are phylogenetically distinct from them. These organisms cause major global economic losses to agriculture and fisheries, with representative pathogens being Phytophthora infestans, the cause of late potato blight and Saprolegnia diclina, the instigator of "cotton molds" in fish. As in all eukaryotes, cytoplasmic Ca(2+) is a key second messenger in oomycetes, regulating life-cycle transitions, controlling motility and chemotaxis and, in excess, leading to cell-death. Despite this, little is known about the molecular mechanisms regulating cytoplasmic Ca(2+) concentrations in these organisms. Consequently, this review analyzed the presence of candidate calcium channels encoded within the nine oomycete genomes that are currently available. This revealed key differences between oomycetes and other eukaryotes, in particular the expansion and loss of different channel families, and the presence of a phylum-specific group of proteins, termed the polycystic kidney disease tandem ryanodine receptor domain (PKDRR) channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes.

Plant pathogenic microbes deliver effector proteins inside host cells to modulate plant defense circuitry and enable parasitic colonization. As genome sequences from plant pathogens become available, genome-wide evolutionary analyses will shed light on how pathogen effector genes evolved and adapted to the cellular environment of their host plants. In the August 2007 issue of Plant Cell, we des...

متن کامل

Reconstruction of Oomycete Genome Evolution Identifies Differences in Evolutionary Trajectories Leading to Present-Day Large Gene Families

The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We...

متن کامل

The changes in lipid composition of Pythium irregulare LX oomycetes at a stressful situation created with crude oil

Pythium irregulare oomycetes adapts with environmental changes including crude oil concentration by changing the composition of lipids in the cytoplasmic membrane and providing the required characteristics for adaptation in improper and stressful environmental situations. It was found that cultivation of Pythium irregulare LX oomycetes in the nutrient media with different concentrations of crud...

متن کامل

Re-analyses of “Algal” Genes Suggest a Complex Evolutionary History of Oomycetes

The spread of photosynthesis is one of the most important but constantly debated topics in eukaryotic evolution. Various hypotheses have been proposed to explain the plastid distribution in extant eukaryotes. Notably, the chromalveolate hypothesis suggested that multiple eukaryotic lineages were derived from a photosynthetic ancestor that had a red algal endosymbiont. As such, genes of plastid/...

متن کامل

NLR network mediates immunity to diverse plant pathogens.

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins to respond to invading pathogens and activate immune responses. An emerging concept of NLR function is that "sensor" NLR proteins are paired with "helper" NLRs to mediate immune signaling. However, our fundamental knowledge of sensor/helper NLRs in plants remains limited. In this study, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016